
General announcements



The Gods Must be Crazy. . . 
A plane moving with velocity v at an angle    with the horizontal is “h” meters 
above the ground.  A coke bottle is released out its window.  How fast is the bottle 
moving just before it hits the ground? 
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The Work/Energy Theorem might work, except the work gravity does is going to 
change from point to point.  So what to do?
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Bit of Slight of Hand

28.)

A ball moves from position 1 at      to 
position 2 at      as shown on the sketch.  How 
much work does gravity do in the process?

We can derive the work quantity using the 
standard          approach and noting that the 
direction of the gravitational force is opposite 
the direction of the displacement of the ball as 
it moves upward.  Doing so yields:
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29.)

We next need to derive the amount of 
work gravity does on the ball as it traveled 
from position 1 to position 2 along the 
convoluted path shown to the right.  Note that 
I’ve broken the sections into mini-sections for 
easy analysis.
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Conclusion: All that matters when doing a work calculation with gravity is
where you start and where you end with the path making no difference at all.

section 2

section 3 section 5

section 4

--in section 1 and 4, gravity does no work 
done as the force is perpendicular to the 
displacement through those sections; 
--in section 3, gravity’s work is negative 
(force down, motion up) whereas in 
section 5, its work is the same magnitude 
but positive, so these two add to zero.
--in section 2, gravity does negative work in the amount calculated in the 
previous section . . . 



30.)

Force fields that act this way, whose work calculations are PATH 

INDEPENDENT, are called CONSERVATIVE FORCES.

Note that a conservative force does NO 
NET WORK around a closed path (another 
example beyond the visual shown to the 
right is the work gravity would do as the 
ball went from position 1 out and back to 
position 1).

This means a non-conservative force 
does work that is path dependent.  The 
classic example of this is friction.
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Pick any point and begin 
summing the work quantities 
back around to that point.  If the 
force is conservative, the sum 
will be zero (same amount of 
positive as negative work done, 
net)



with           looking very much like such a function (almost—there’s a negative 
sign out in front of the difference, but that’s OK, the general idea still holds)

31.)

If all that matters is where you 
start and where you end when doing a work 
calculation for a conservative forces like 
gravity, wouldn’t it be cool if we could define 
a function U that would assign a number to 
and a number to      that would be such that 
when you took the difference between the two, 
you got the amount of work done by the field 
as you proceeded between the two points?
(And the answer to that question is, “Yes, 
definitely very cool.”)
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Well, that’s exactly what we stumbled onto when we did the work calculation 
using the conventional         approach on on gravity.  Because looking at our 
solution, we got:

Wgrav = − mgy2 −mgy1( )
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32.)

Functions that do this kind of thing, 
that allow you to determine how much work a 
conservative force field does on a body 
moving from one point to another in the field 
simply by evaluating the function at the 
endpoints of the displacement, are called 
POTENTIAL ENERGY FUNCTIONS.   

position 2

position 1
The symbol used for potential energy 
functions is a U, and the potential energy 
function for gravity when near the earth’s 
surface is:

Ugrav = mgy

Furthermore, the relationship between potential energy functions and work
calculations is:

Wcons.force = −ΔU
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33.)

So using our potential energy function 
for gravity (near the surface of the earth) on 
our ball problem, we could write:
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In short, if you know a force field’s 
potential energy function, in almost all instances 
it’s a LOT easier to do a work calculation for the 
force using its potential energy function than 
trying to get the result using         .

Wgrav = −ΔU

        = − U2 − U1( )
        = − mgy2 − mgy1( )

U1 = mgy1

U1 = mgy2
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34.)

What’s important to understand is that potential energy 
is a mathematical contrivance created to do ONE THING 
and ONE THING ONLY—to determine how much work a 
conservative force does on a body moving from one point 
to another in the field.

The ONLY THING you will ever use a potential energy 
function for will be to do WORK CALCULATIONS, and 
the only way you will ever use that function will be by 
taking the difference of the evaluation of the function at 
the motion’s endpoints, then sticking a negative sign in 
front of that value.



35.)

Let’s see how well you’ve understood 
this.  A block is about to fall from the position 
shown to the level of the table top.  Little 
Billy says the block starts out with potential 
energy          .  Little Missie says, “Oh, no, it 
has potential energy equal to                     .  
Who is right? 
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Answer: Both are making statements that could 
be correct.  How so?  

As there is no preferred F = 0 position for 
gravity near the surface of the earth, there is no 
preferred position to make the gravitational
potential energy equal to zero.  You can see that in its definition.  Mgy is 
dependent upon where you put y = 0, which is dependent upon where how 
you define your coordinate axis.

y2 − y1



37.)

But Little Suzie is an iconoclast.  She decides to 
make her y = 0 position the top of the table (i.e., at 
position 1).  So in her rendition, her sketch looks like 
the one shown to the right and her “work done” 
calculation for the body as it moves from position 2

y = 0

y2 − y1

position 2

Wgrav = − U2 − U1( )
        = − 0 − mg y2 − y1( )( )
        = mgy2 − mgy1( )

This is the same value Little Billie got in his calculation (shouldn’t be surprising as 
the motion hasn’t changed even if the coordinate axis has).

to position 1 looks like:   
position 1



38.)

Conclusions:

y = 0

y2 − y1

position 2

Wgrav = − Ug − U1( )
        = − mg −y1( )− 0( )
        = mgy1

1.) Although it is commonly done, making 
statements like, “The body at position 2 has 
potential energy in the sense that it can 
potentially pick up kinetic energy” is a little 
bit dangerous.  Why?  Because if we take 
the zero level to be the tabletop, the 
gravitational potential energy at that point, 
BY DEFINITION, is ZERO.  With that, it 
makes no sense to claim that there is NO 
potential for a body to pick up kinetic 
energy if it were to drop from that level to 
the ground. In fact, that work calculation 
would look like: 
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yg = −y1



36.)

As the axis is currently set up with y = 0 at the 
floor, the potential energy at position 2 is, indeed,                     

as Little Billie stated.  But potential 
energy functions are only meaningful in pairs 
because minus their difference between two points is 
what is related to work calculations.  
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Wgrav = − U2 − U1( )
        = − mgy1 − mgy2( )
        = mgy2 − mgy1( )        (done for comparison later)

Little Billie seems vindicated.

U2 = mgy2

Using Little Billie’s defined value as it 
was meant to be used, then, the work done 
on the body as it went from position 2 to 
position 1 becomes:   



Back to “The Gods Craziness . . . “
A plane moving with velocity v at an angle    with the horizontal is “h” meters above 
the ground.  A coke bottle is released out its window.  How fast is the bottle moving 
just before it hits the ground? 
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We can now use the Work/Energy Theorem because even though gravity’s work 
changes from point to point, it’s potential energy function allows us to circumvent 
that . . . (yippee . . . ).  And with that, we get:
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Pile driver
• A 2100-kg pile driver drops 5.00 m before striking 

a vertical I-beam stuck in the ground.  Upon 
collision, it drives the I-beam 18.0 cm farther into 
the ground. Assuming 3000 joules of energy was 
lost during the collision, use energy considerations 
to determine the average force the driver exerts on 
the beam.

2100 kg

I-beam

5.00 m

18 cm



ground

y=0

2.)

The temptation is to assume that energy considerations have to be 
exercised over the entire system—both the driver and the beam.  If that 
had been the case, we would have had to take into account the fact that a 
gravitational potential energy change occurred for both the driver AND 
the beam (the beam did change vertical position during the contact).  As 
we don’t know the mass of the beam, we can’t do that.  An alternative is

                             Wnet                          = KE2 − KE1

  ⇒   Wgrav          + Wcollision +     Wloss    =   0   −  0

− U2,grav − U1,grav( )  +   
!
F i
!
d  + −3000 J( ) =        0

to use energy considerations on just the driver.  In that case, along with potential and 
kinetic energy considerations, there is also work done by the force the beam exerts on 
the driver as the driver is brought to rest (in fact, that is the very force we are trying to 
determine) and the energy loss due to the actual collision.  The driver starts from rest 
and ends at rest, so putting it all together, the Work/Energy yields:

h2 = 5

h1 = .18

A 2100 kg pile driver drops from a height of 5 meters before 
striking a vertical I-beam.  It drives the beam 18 cm into the 
ground.  ASSUMING 3000 joules of energy was lost during the 
collision, use energy considerations to determine the average force 
the driver exerts on the beam.  (You may also assume that the 
change of the beam’s gravitational potential energy is negligible).



Putting in the numbers in we get:

3.)

ground

y=0
h1 = .18

h2 = 5

        − U2,grav − U1,grav( )                    + 
!
F i
!
d         + −3000 J( ) =  0

   − mg 0( )− mg h1 + h2( )( )      + F .18( )cos180o + −3000 J( ) =  0

2100 kg( ) 9.8 m/s2( ) 5.18 m( )  +  F .18( )cos180o   + −3000 J( ) =  0

                          ⇒    F = 5.76x105  nts



Gravitational PE, aka U
• From these examples (and many others like them) we can see 

that the work done by gravity as an object moves between 
heights is independent of the path taken.
– That is, work done by gravity only cares about the starting and ending 

points and the height differential between them.
– This makes gravity a conservative force

• Path independent
• Energy is turned into another form within the system

• This leads us to the idea of gravitational potential energy, U
– Near the Earth’s surface, the gravitational potential energy of any 

object of mass m at a height y above a reference point can be found by:

𝑈 = 𝑚𝑔𝑦



Gravitational PE
• You get to decide where y = 0 is!

– Depending on the problem, it might be the ground, a table, the lowest 
point the object reaches, the highest point, whatever.

– It doesn’t matter where y = 0 is as long as you indicate where it is, and 
you keep it consistent. It’s the change of position that’s important.

• Gravitational PE is also measured in Joules, just like kinetic 
energy and work.

• Gravitational PE can turn into kinetic energy and vice versa 
without being “lost” – as long as there are no outside forces 
doing work. This is part of being a conservative force.



We started by noticing that a force component acted along the line of a body’s 
motion will affect the magnitude of the body’s velocity.  We multiplied the force 
component and displacement to generate the scalar quantity called work.  

How We Got Here!

2.)

Using Newton’s Second, we derived a relationship between the net work
done on a body and the change of the body’s kinetic energy.  This was called the 
work/energy theorem.

We then noticed that there are forces whose work done does not depend upon 
the path taken as a body travels between two points—whose work is strictly end-
point dependent (friction was clearly not one of these forces).  In such cases, we 
developed the idea of a function that, when evaluated at the endpoints, would 
allow us to determine how much work the field did as a body moved between the 
points . . . which is to say, we developed the idea of potential energy functions.

So now it’s time to take the last step, starting with the work/energy theorem.


